ONLINE-ANALYSIS OF TAR IN THE PRODUCT GAS OF THE BIOMASS GASIFICATION PROCESS VIA UV/VIS- SPECTROSCOPY

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT

Tobias Weide¹, Wolfgang Becker¹, Sarah Böringer¹, Alexander Bulgarin¹, Viktor Guschin¹, Sabine Kölle¹, Matthieu Lavanant¹ Stephan Seidelt²

¹ Fraunhofer Institute for Chemical Technology: Joseph-von-Fraunhofer Strasse 7, 76327 Pfinztal, Germany ² European Institute for Energy Research (ElfER): Emmy-Noether-Strasse 11, 76131 Karlsruhe

INTRODUCTION

Biomass gasification is a very important technique in the production of renewable energy. Compared to solar or wind energy it allows a continuous production and usage of energy. Furthermore this technique provides various forms or sources of energy such as fuel and thermal or electrical energy[1]. Unfortunately the industrial exploitation of this technique is quite difficult due to technical barriers. The effectiveness of gasification plants mainly depends on tar formation. Tar is formed through the thermochemical conversion of biomass and represents a condensable side product that contains mostly aromatic or polycyclic aromatic compounds (PAH). Statements concerning the tar composition and concentration may help for a better understanding of the gasification process. Therefore the product gas is analyzed online via UV/VIS spectroscopy. For the evaluation of the obtained data the MCR (Multivariate Curve Resolution) is used. The combination of these methods and tools make it possible to characterize tars in the product gas stream during the gasification of biomass.

MEASUREMENT SETUP

Figure 1. Schematic view of the experimental setup

EXPERIMENTAL

Online UV/Vis absorption spectra of the product gas acquired during the gasification of the wood/olive pellets. Online UV/Vis absorption spectra of the product gas acquired during the gasification of the wood/olive pellets.

fiber holde fiber holder quartz glass (lense included) (lense included) window quartz glass window optical fiber optical fiber brackets brackets light source pectromete beam gas stream Figure 2. Schematic view of the measuring cell

Figure 3. Absorption spectra of the biomass gasification process

RESULTS & DISCUSSION

Figure 4. Decoupled component spectra of the absorption spectra

Estimated spectra and estimated concentration were determined by the Multivariate Curve Resolution (MCR). Using the MCR, the spectra were decoupled in 6 components. The individual components describe spectroscopic information for a specific group of substances representing the similar absorption spectra.

Taking Table 1 into consideration, it is obvious that every substance group has a main peak in the same wavelength area. Furthermore every substance in a group has a common number of directly conjugated double bounds. Directly conjugated means that the double bounds are able to conjugate over the whole molecule.

The decoupling of the absorption spectra shows a suggestion

modeling, it is possible to recognize such circumstances [3]. In addition the other 5 estimated components match with the substance groupings listed in Table 1. Main and side peaks are equal in terms of wavelength and amount of the extinction coefficient with the result that component 2-6 can be assigned to tar substances as shown in Figure 5 b)-f). Furthermore the evaluation allows, under the consideration of individual exceptions (e.g. biphenyl, 1,1-binaphthyl), a decoupling into tars distinguished by 1, 2, 3, 4 and 5 aromatic rings.

Figure 6 shows the resolved concentration profiles.
Concentration is plotted versus the spectra number. At this
point it has to be mentioned, that the concentration is given
in arbitrary units. Only the proportions of concentrations are
meaningful. For a declaration e.g. in g/Nm³ the analyzing
process has to be calibrated. However, the results are very
relevant due to the fact that they yield component-oriented
concentrations.

CONCLUSION

The combination of UV/Vis spectroscopy and MCR method is used for the online characterization of tars in the product gas flow. It is shown that the absorption spectra of tars are characteristic for the amount of directly conjugated double bonds. Additionally, the decoupled absorption spectra show similarities to these findings. This is the reason why the qualitative analysis provides the result that the estimated components equal, with isolated exceptions, the number of aromatic compounds in the molecule. In addition to the qualitative analysis, it is also possible to make detailed statements on the concentration of every component, however only given in arbitrary units. To substantiate these statements for example in an amount of g/Nm³, the analyzing process has to be calibrated in the near future. Concerning the qualitative analysis, the influence of hydroxyl substituents has also to be examined in further research activity. Finally it is shown that combining UV/Visspectroscopy with MCR evaluation enables a detailed qualitative and quantitative analysis of tar which is easy to handle and cost-effective. This describes a major advance in the field of tar analysis.

Figure 5. a) component 1, spectrometer drift ; b) component 2, 3 conjugated double bounds ; c) component 3, 11 conjugated double bounds; d) component 4, 9 conjugated double bounds; e) component 5, 5 conjugated double bounds; b) component 6, 7 conjugated double bounds of 6 components (Figure 4, Figure 5). As shown in Figure 5 a) the first component describes the spectrometer drift. Due to the fact, that MCR-Analysis is a combination of soft and hard

Table 1. Listing of different tars and their peaks with the corresponding extinction coefficient, sorted by the amount of the directly conjugated double bound [2].

substance	substance group	directly conjugated double bounds	aromatics with 6 C-atoms	main peak [nm]	3	Side peak [nm]	3	Side peak [nm]	3
Fluorene	1	3	1	202	44000	255	19400		
Toluene		3	1	208	7900	262	260		
Benzene		3	1	204	8800	254	250		
o-Xylol, m-Xylol		3	1	203	8900	256	260		
Indene		3	1	209	22000	252	9800		
Phenol		3	1	211	6000	271	2200		
p-Cresol		3	1	207	6000	272	2250		
Biphenyl		3	2	201	45500	247	17000		
Acenaphthylene	2	5	2	218	43700	312	10800		
Naphtalene		5	2	211	45300	265	5600		
Acenaphthene		5	2	218	97000	275	6500		
1,1-Binaphthyl		5	4	220	101000	283	34000		
Anthracene	3	7	3	241	220000	210	11400	340	8500
Phenanthrene		7	3	240	67000	210	23000		
Chrysene	4	9	4	267	139000	221	28500		
Naphtacene		9	4	269	41000	209	47500		
Benzo[c]pheanthrene		9	4	272	83000	209	50000		
Benzo[a]anthracene		9	4	278	83000	210	45200	330	29300
Pentacene	5	11	5	295	148000	323	8500		
Benzo[a]naphthacene		11	5	296	125000	255	66000	216	35000
Dibenzo[a,c]anthracene		11	5	280	133000	211	31000	326	8100
Dibenzo[a,j]anthracene		11	5	290	129000	220	50000	251	39400
Benzo[g]chrysene		11	5	286	68000	210	44000	320	11800

Figure 6. Estimated concentration profiles

ACKNOWLEDGMENTS

This work was supported by EU grant number 308733 under the Seventh Framework Programme (FP7).

LITERATUR

- [1] Fraunhofer IBP, et al.: Energiekonzept 2050. Eine Vision für eine nachhaltiges Energiekonzept auf Basis von Energieeffizienz und 100% erneuerbaren Energien.
- [2] Perkampus, H.-H.: UV-VIS atlas of organic compounds. Weinheim, New York: VCH 1992.
- [3] Kessler, W.: Multivariate Datenanalyse. Für die Pharma-, Bio- und Prozessanalytik; ein Lehrbuch. Weinheim: Wiley-VCH 2007.